
You might have heard that
Delphi uses and manages Run

Time Type Information (RTTI for
short) in many complex ways, but
looking in the help file and in most
of the available books you’ll find
little or nothing on this subject.
RTTI is very important in Delphi,
especially in the Delphi
development environment

Consider this case. You write a
brand new component, with cus-
tom properties based or your own
data types, and these properties
are readily displayed in the Object
Inspector. How does the Object
Inspector know about the code
you’ve written? How can it list the
values of an enumerated type or a
set type which you’ve defined? The
magic going on here is called RTTI.

Wouldn’t it be nice to be able to
access similar information in a
similar dynamic fashion? Sure, and
this is exactly what this article is
about. I won’t be able to give you
the ultimate word on this topic,
simply because all I know is based
on research and experiment. All
Borland tells us about RTTI is in-
cluded in the un-commented file
TYPINFO.PAS.

The lack of documentation is
probably because Borland wants
to be free to change how RTTI
works in future versions, but look-
ing at the first two versions of
Delphi I can say that this area
seems to be quite stable. However,
take extreme care in using this ap-
proach, since it is completely un-
supported by Borland (although it
has been discussed from time to
time in the CompuServe Delphi
forums). Notice, by the way, that in
this article I’m covering Delphi 2,
although most of the code will run
in Delphi 1 almost unchanged.

Accessing Type Information
The basic idea of RTTI is that you
can access information related to a
given data type. This can be a class
or a plain Pascal data type. You can
also get the type information

related to a property, accessing it
by name.

Let’s start by looking at some
VCL source code. If you look for the
class TObject in the help or in the
source, you will notice an interest-
ing but only vaguely documented
method:

class function ClassInfo:
 Pointer;

This class method returns an un-
defined pointer, described as “a
pointer to the run-time type infor-
mation (RTTI) table for the object
type” in the Delphi 2.01 help. This
pointer actually refers to an area in
memory holding the RTTI informa-
tion for the class, generated auto-
matically by the compiler. Notice
that this pointer is not a class ref-
erence, this is what the ClassType
method of TObject returns.

Looking Into TYPINFO.PAS
To understand the role of this
ClassInfo pointer we have to start
looking into the file TYPINFO.PAS.
It turns out that this ClassInfo
pointer is actually of type PType-
Info. The same pointer is returned
by another Delphi function, which
allows you to access to type infor-
mation of non-class data types:

function TypeInfo(TypeIdent):
 Pointer;

By the way, I’ve found several on-
line references claiming that you
can only obtain RTTI information
for classes and properties. Al-
though this is the more common
use, it is possible to get similar in-
formation for plain data types and
for classes with no published
members.

In Listing 1 you can see the defi-
nition of the data structure PType-
Info points to, the list of
enumerated values for the Kind
field and the further details of the
data types. These further specifica-
tions are used by the TTypeData
structure.

TTypeData is the type of the com-
mented TypeData member of the
TTypeInfo record. You can access it
either by finding your way with
pointer arithmetic (looking at the
actual size of the string), or by fol-
lowing the official approach: use
the GetTypeData function:

function GetTypeData(TypeInfo:
 PTypeInfo): PTypeData;

This function basically returns a
pointer to the last field of the
TTypeInfo structure. What kind of
type information do we get access
to? This basically depends on the
TTypeKind. The TTypeData structure,
in fact, is a big variant record, with
up to three levels of nested variant
structures. Instead of showing you

type
 PTypeInfo = ^TTypeInfo;
 // a pointer to TTypeInfo
 TTypeInfo = record
 Kind: TTypeKind;
 Name: ShortString;
 {TypeData: TTypeData}
 end;
 TTypeKind = (tkUnknown, tkInteger, tkChar,
 tkEnumeration, tkFloat, tkString, tkSet,
 tkClass, tkMethod, tkWChar, tkLString,
 tkLWString, tkVariant);
 TOrdType = (otSByte, otUByte,
 otSWord, otUWord, otSLong);
 TFloatType = (ftSingle, ftDouble,
 ftExtended, ftComp, ftCurr);
 TMethodKind = (mkProcedure, mkFunction);
 TParamFlags = set of (pfVar, pfConst, pfArray);

➤ Listing 1: TTypeInfo record and related types (from TYPEINFO.PAS)

Introducing Delphi RTTI
by Marco Cantù

December 1996 The Delphi Magazine 17

the original listing, I’ve tried to re-
format it in a more readable way,
adding some comments (following
the declaration they refer to) as
well. The result is in Listing 2.

Armed with this information we
can start writing some helper func-
tions and test them in simple pro-
grams. I’ll get back later to the
TYPINFO.PAS file to explore some
further data structures and rou-
tines defined there. The files for
this article include a fully com-
mented version of TYPINFO.PAS,
renamed CTYPINFO.PAS. It can be
a handy reference.

RTTI For Ordinal Types
The simplest techniques relate to
extracting information about ordi-
nal types, including simple ones
(eg integers and characters), enu-
merated types and sets. Once you
understand how the TTypeData
structure is arranged, there is little
more to say. So we can start looking
into the helper routines, then the
example program.

The first routine is the ShowOrdi-
nal procedure (see Listing 3),
which adds RTTI information for
enumerated data types to a list of
strings (a TStrings object) passed
as a parameter. The first parameter
is a PTypeInfo pointer.

Besides the basic information, I
add the minimum and maximum
values if the data type is not a set
and add specific values for enumer-
ated and set types. Enumerated
types have a base type and a list of
values. The base type is the type
this enumeration was built from.
Usually this is the type itself, but in
some rare cases (such as the
TBorderStyle type) the base type is
an enumeration with more values.
Notice that the BaseType field is of
type PTypeInfo, so we can access
its name using the pointer de-
reference operator (^). To show
the list of possible values of the
enumerated type, I use a second
helper routine, ListEnum (which is
described later).

For a set, I basically show the
data of the base type by calling the
ShowOrdinal procedure again. This
is simple, because the CompType
field stores the PTypeInfo pointer I
need to pass to the procedure.

Notice that in Delphi 2 only you
can refer to a field of a structure
without using the de-reference
operator, even if you are using a
pointer. Instead of pti^.Kind you
can write pti.Kind producing
exactly the same effect.

Enumerated Type Values
In the code above I use the GetEnum-
Name function. It requires as pa-
rameters the type information of
the data type (obtained by calling
the TypeInfo function, passing the
enumerated data type as parame-
ter) and the value of the enumera-
tion we are looking for. For
example, I can write:

GetEnumName(
 TypeInfo(TFormStyle), 0)

to retrieve the fsNormal string. The
code in the procedure above, for
the TTypeKind and TOrdType enumer-
ated types is only slightly more
complex, also because we have to
cast the value of the enumerated
type to an integer, as in:

GetEnumName(TypeInfo(TFormStyle),

 Integer(fsNormal))

which returns the string corre-
sponding to the enumerated value
passed as a parameter. Notice that
the reverse operation is possible
as well, by calling the GetEnumValue
function.

What is interesting is that know-
ing the minimum and maximum
value of an enumerated type we
can easily list all the names. This is

type
 PTypeData = ^TTypeData;
 // a pointer to TTypeData
 TTypeData = packed record
 case TTypeKind of
 tkUnknown: (); // no information
 tkLString: (); // no information
 tkLWString: (); // no information
 tkVariant: (); // no information
 tkInteger: (
 OrdType: TOrdType;
 MinValue: Longint;
 MaxValue: Longint);
 tkChar, tkWChar: (
 OrdType: TOrdType;
 MinValue: Longint;
 MaxValue: Longint);
 tkEnumeration: (
 OrdType: TOrdType;
 MinValue: Longint;
 MaxValue: Longint;
 BaseType: PTypeInfo;
 // the original type definition
 NameList: ShortString);
 // the enumeration names (see GetEnumName)
 tkSet: (
 OrdType: TOrdType;
 CompType: PTypeInfo);
 // the enumerated type the set is built from
 tkFloat: (
 FloatType: TFloatType);
 tkString: (
 MaxLength: Byte);
 tkClass: (
 ClassType: TClass;
 // the class reference
 ParentInfo: PTypeInfo;
 // the parent type information
 PropCount: SmallInt;
 // the number of properties
 UnitName: ShortString
 // the unit defining the class type
 {PropData: TPropData});
 { the properties data: to access this information
 call procedure GetPropInfos or function GetPropList}
 tkMethod: (
 MethodKind: TMethodKind;
 // mkProcedure, mkFunction
 ParamCount: Byte;
 // the number of parameters
 ParamList: array[0..1023] of Char
 // the parameters list, better described as:
 {ParamList: array[1..ParamCount] of
 record
 Flags: TParamFlags;
 ParamName: ShortString;
 TypeName: ShortString;
 end;
 ResultType: ShortString});
 // the return type
 end;

➤ Listing 2: The TTypeData structure

18 The Delphi Magazine Issue 16

what the procedure ListEnum does
in a few lines of code (Listing 4).

The ORDTYPE Example
With this code available we can
build a very simple example show-
ing information about ordinal
types. We only need to provide a
component with a list of strings (a
list box or a memo will do) for the
output and a way to select a data
type.

A good solution, of course, is to
have a list box or a combo box for
the selection. However, if we add
the names of the data types in this
list, then there is no way to retrieve
the type information. One possible
solution is to create a list with both
the class names and the class infor-
mation. This is easy to do because
the TStrings and TStringList
classes allow us to attach objects
to the strings we store. Since these
objects are simply 32-bit pointers,
we can store any other similar
pointer instead, casting it to TOb-
ject. We can write something like:

ListBox1.Items.AddObject(
 ’Integer’,
 TObject(TypeInfo(Integer)))

Since we’d like to add many data
types, a better approach is to wrap
this statement inside a form
method, which takes a PTypeInfo
parameter and adds the type name
and the type information to the
listbox:

procedure TForm1.AddType(
 pti: PTypeInfo);
begin
 ListBox1.Items.AddObject(
 pti^.Name, TObject(pti))
end;

When the form is created, the
ORDTYPE program simply calls
this AddType method about 50 times
in the FormCreate method, with
both system and VCL types, as in:

AddType(TypeInfo (Boolean));
AddType(TypeInfo (TAlignment));

Of course you can add some more
system types (provided they are
ordinal types) and many more VCL

procedure ShowOrdinal(pti: PTypeInfo; sList: TStrings);
var ptd: PTypeData;
begin
 // protect against misuse
 if not (pti^.Kind in
 [tkInteger, tkChar, tkEnumeration, tkSet, tkWChar]) then
 raise Exception.Create(’Invalid type information’);
 // get a pointer to the TTypeData structure
 ptd := GetTypeData(pti);
 // access the TTypeInfo structure
 sList.Add(’Type Name: ’ + pti^.Name);
 sList.Add(’Type Kind: ’ +
 GetEnumName(TypeInfo(TTypeKind), Integer(pti^.Kind)));
 // access the TTypeData structure
 sList.Add(’Implement: ’ +
 GetEnumName(TypeInfo(TOrdType), Integer(ptd^.OrdType)));
 // a set has no min and max
 if pti^.Kind <> tkSet then begin
 sList.Add(’Min Value: ’ + IntToStr(ptd^.MinValue));
 sList.Add(’Max Value: ’ + IntToStr(ptd^.MaxValue));
 end;
 // add the enumeration base type
 // and the list of the values
 if pti^.Kind = tkEnumeration then begin
 sList.Add(’Base Type: ’ + (ptd^.BaseType)^.Name);
 sList.Add(’’);
 sList.Add(’Values...’);
 ListEnum(pti, sList);
 end;
 // show RRTI info about set base type
 if pti^.Kind = tkSet then begin
 sList.Add(’’);
 sList.Add(’Set base type information...’);
 ShowOrdinal(ptd^.CompType, sList);
 end;
end;

➤ Listing 3: The ShowOrdinal helper routine

procedure ListEnum(
 pti: PTypeInfo;
 sList: TStrings);
var I: Integer;
begin
 with GetTypeData(pti)^ do
 for I := MinValue to
 MaxValue do
 sList.Add(’ ’ +
 IntToStr(I) + ’. ’ +
 GetEnumName(pti, I));
end;

➤ Listing 4

➤ Figure 1:
The list of
possible
values of an
ordinal type
as shown by
ORDTYPE

types. I’ve just picked a few. Now
when the user clicks on an item of
the list box, we can write the code
shown in Listing 5 to retrieve the
pointer to the type information and
update the list.

The result of all of this work is
the form you can see in Figure 1. In
this case the program shows the
RTTI information of an enumerated
type, but you should try it with
ordinal values and sets as well.

20 The Delphi Magazine Issue 16

if ListBox1.Items [ListBox1.ItemIndex] = ’TColor’ then begin
 ListBox2.Items.Add(’’);
 ListBox2.Items.Add(’Values...’);
 GetColorValues(AddToList);
end;
if ListBox1.Items [ListBox1.ItemIndex] = ’TCursor’ then begin
 ListBox2.Items.Add(’’);
 ListBox2.Items.Add(’Values...’);
 GetCursorValues(AddToList);
end;

➤ Listing 6

procedure TForm1.Listbox1Click(
 Sender: TObject);
var
 pti: PTypeInfo;
begin
 pti := PTypeInfo(
 ListBox1.Items.Objects[
 Listbox1.ItemIndex]);
 ListBox2.Items.Clear;
 ShowOrdinal(pti,
 ListBox2.Items);
end;

➤ Listing 5

procedure ShowMethod(pti: PTypeInfo; sList: TStrings);
var
 ptd: PTypeData;
 pParam: PParamData;
 nParam: Integer;
 Line: string;
 pTypeString, pReturnString: ^ShortString;
begin
 // protect against misuse
 if pti^.Kind <> tkMethod then
 raise Exception.Create(’Invalid type information’);
 // get a pointer to the TTypeData structure
 ptd := GetTypeData(pti);
 // 1: access the TTypeInfo structure
 sList.Add(’Type Name: ’ + pti^.Name);
 sList.Add(’Type Kind: ’ + GetEnumName(TypeInfo(TTypeKind), Integer(pti^.Kind)));
 // 2: access the TTypeData structure
 sList.Add(’Method Kind: ’ +
 GetEnumName(TypeInfo(TMethodKind), Integer(ptd^.MethodKind)));
 sList.Add(’Number of parameter: ’ + IntToStr(ptd^.ParamCount));
 // 3: access to the ParamList. Get initial pointer and reset parameters counter
 pParam := PParamData(@(ptd^.ParamList));
 nParam := 1;
 // loop until all parameters are done
 while nParam <= ptd^.ParamCount do begin
 // read the information
 Line := ’Param ’ + IntToStr(nParam) + ’ > ’;
 // add type of parameter
 if pfVar in pParam^.Flags then
 Line := Line + ’var ’;
 if pfConst in pParam^.Flags then
 Line := Line + ’const ’;
 // get the parameter name
 Line := Line + pParam^.ParamName + ’: ’;
 // one more type of parameter
 if pfArray in pParam^.Flags then
 Line := Line + ’ array of ’;
 // the type name string must be located...
 // moving a pointer past the params and the string (including its size byte)
 pTypeString := Pointer(Integer(pParam) +
 sizeof(TParamFlags) + Length(pParam^.ParamName) + 1);
 // add the type name
 Line := Line + pTypeString^;
 // finally, output the string
 sList.Add(Line);
 // move pointer to next structure, past the two strings (including size byte)
 pParam := PParamData(Integer(pParam) + sizeof(TParamFlags) +
 Length(pParam^.ParamName) + 1 + Length(pTypeString^) + 1);
 // increase the parameters counter
 Inc(nParam);
 end;
 // show the return type if a function
 if ptd^.MethodKind = mkFunction then begin
 // at the end, instead of a param data, there is the return string
 pReturnString := Pointer(pParam);
 sList.Add(’Returns > ’ + pReturnString^);
 end;
end;

➤ Listing 7: The ShowMethod helper routine

Special Functions
For Cursors And Colors
If you run ORDTYPE and look at the
TColor and TCursor data types,
you’ll notice that they are simply
indicated as numeric values, not
enumerated types, although their
behavior in the Object Inspector
might seem to indicate that. How-
ever, the programs displays the list
of cursors or colors anyway (see
Figure 2). How can this happen?

Of course, it is possible to re-
trieve a lot of information about
these two data types, using special
functions. To get a list of cursors or
a list of colors, you can call the
GetCursorValues and GetColorVal-
ues procedures respectively.
These two procedures behave like
enumerated functions: they re-
quire a method as parameter,
which is called once for each value
in the list. Here is the method
passed to the procedures:

procedure TForm1.AddToList(
 S: String);
begin
 ListBox2.Items.Add(S);
end;

and Listing 6 shows the code added
to the ListBox1Click method of the
form.

To handle colors and cursors
there are other special support
functions, such as ColorToString
and CursorToString, to turn a
numeric value into a string and
StringToColor and StringToCursor
to obtain the numeric value
corresponding to a string.

RTTI For Method Pointers
Accessing the RTTI information re-
lated to ordinal types is not too
difficult, once you understand the
basic concepts. Looking into
method pointer types gets slightly
more complex. The example I am
going to build (METHTYPE) is very
similar to the ORDTYPE program.

Again, the form has two list
boxes, one with the type names
and the other displaying the RTTI
information. The first list box is
filled as before by calling the
AddType method, which adds the
type name to the list and type data
to the corresponding item of the
Objects array property. However,
the initialization now takes place
with method pointers, as in:

AddType(
 TypeInfo (TNotifyEvent));
AddType(
 TypeInfo (TFindMethodEvent));

When the user selects a new item
in this listbox, the second listbox is
filled with information, by calling

December 1996 The Delphi Magazine 21

the ShowMethod helper routine. So
all the code is actually in one place:
ShowMethod. This is another com-
plex procedure, as you can see
from the source code in Listing 7.

The first part of ShowMethod re-
sembles ShowOrdinal in the last ex-
ample. Once we’ve displayed the
basic type information, we can
start looking at the specific data. In
this case we retrieve the kind of
method (either procedure or func-
tion) and the number of parame-
ters. Accessing the parameters
information is where things get a
little bit confused. You can go back
to the code of the TTypeData struc-
ture (Listing 2) to see the original
description. Since the actual struc-
ture of the parameters data was
commented, I’ve re-defined it as:

type
 TParamData = record
 Flags: TParamFlags;
 ParamName: ShortString;
 TypeName: ShortString;
 end;
 PParamData = ^TParamData;

In practice, for each parameter
there is the flag, followed by two
strings. The problem is that the
physical length of each string cor-
responds to the actual length of its
data. So we have to look to the
length byte at the beginning (these
are short strings, that is traditional
Pascal strings) to see where the
next string begins. In practice, we
cannot use the TypeName field at all,
since the type definition suggests a
fixed string length. Instead, once
we have a pointer to the beginning
of the structure, we can get a
pointer to the TypeName string with
the following code:

pTypeString :=
 Pointer(Integer(pParam) +
 sizeof(TParamFlags) +
 Length(pParam^.ParamName) +
 1);

Besides the cast to integer to per-
form pointer arithmetic and the fi-
nal cast back to a generic pointer,
this statement adds to the pParam
pointer the size of the flags, plus
the length of the string, plus its
length byte. Similar pointer

arithmetic is done to move to the
data structure of the next parame-
ter, or to the final string holding the
return type which is available at
the end of the parameters list.

You can see an example of the
output of the METHTYPE program
in Figure 3. Most of the methods
listed refer to procedures. Only the
THelpEvent type refers to a func-
tion. Of course, you can look into
the Delphi help files or the VCL
source code and add more method
pointer types to the list.

RTTI For Classes
After looking at the RTTI informa-
tion for ordinal types and method
pointers, we are now ready to look
into the last and most complex
area: RTTI information for classes.

We’ll build an example with the
same user interface as the last two
and write a helper routine to show
class RTTI data inside a TStrings
object.

The first list box has class names
and pointers to the RTTI informa-
tion, but this time I’ve added more
than 200 classes. Selecting an item
from the list box will call yet an-
other helper routine, ShowClass,
which has the same structure as
the procedures we’ve already
seen. The first part (see Listing 8)
should be familiar, the rest
requires some comments.

In Listing 8 I use the ClassType
member of the TTypeData structure
to show the size of the instances of
that class. Having this information
we can show additional class data.

➤ Figure 3:
METHTYPE
program,
showing RTTI
information
for method
pointer types

➤ Figure 2:
The list
of colors
displayed by
ORDTYPE

22 The Delphi Magazine Issue 16

procedure ShowClass(pti: PTypeInfo; sList: TStrings);
var
 ptd: PTypeData;
 ParentClass: TClass;
begin
 // protect against misuse
 if pti^.Kind <> tkClass then
 raise Exception.Create(’Invalid type information’);
 // get a pointer to the TTypeData structure
 ptd := GetTypeData(pti);
 // access the TTypeInfo structure
 sList.Add(’Type Name: ’ + pti^.Name);
 sList.Add(’Type Kind: ’ +
 GetEnumName(TypeInfo(TTypeKind), Integer(pti^.Kind)));
 // access the TTypeData structure
 sList.Add(’Size: ’ + IntToStr(ptd^.ClassType.InstanceSize) + ’ bytes’);
 sList.Add(’Defined in: ’ + ptd^.UnitName + ’.pas’);
 // add the list of parent classes (if any)
 ParentClass := ptd^.ClassType.ClassParent;
 if ParentClass <> nil then begin
 sList.Add(’’);
 sList.Add(’=== Parent classes ===’);
 while ParentClass <> nil do begin
 sList.Add(ParentClass.ClassName);
 ParentClass := ParentClass.ClassParent;
 end;
 end;
end;

➤ Listing 8: The ShowClass helper routine (in its first version)

procedure TForm1.ListBox2Click(Sender: TObject);
var Text: string;
 Index: Integer;
begin
 // get the current item
 Text := ListBox2.Items[ListBox2.ItemIndex];
 // search the first listbox
 Index := ListBox1.Items.IndexOf(Text);
 // if found, it was a parent class: show RTTI
 if Index >= 0 then begin
 ListBox1.ItemIndex := Index;
 ListBox1Click(ListBox1);
 end;
end;

➤ Listing 9

➤ Figure 4

What I find more interesting to do,
instead, is to show the list of parent
classes.

Notice that amongst the RTTI in-
formation we can show the unit
which defined the data structure,
available only for classes and used
by Delphi to automatically add ref-
erenced units as soon as you add a
component to a form.

In Figure 4 you can see an exam-
ple of the output of a class with its
parent classes listed. What is nice
in this example is that a user can
simply click on one of the names of
the parent classes to jump to the
RTTI information for that class.
This is accomplished by checking
if the first list box contains a string
corresponding to the string a user
has clicked onto (see Listing 9).

Besides showing some interest-
ing RTTI for class types, CLASSTYP
also has a neat user interface. But
there is more we want to add. As
discussed in the next section, this
program is capable of showing in-
formation about properties as well.

Getting A Properties List
If you look back at the TTypeData
record definition, we find:

type
 TPropData = packed record
 PropCount: Word;
 PropList: record end;
 {PropList:
 array[1..PropCount]
 of TPropInfo}
 end;

The TPropData structure is actually
seldom used. To access this infor-
mation we use one of the following
routines defined in TYPINFO.PAS:

procedure GetPropInfos(
 TypeInfo: PTypeInfo;
 PropList: PPropList);
function GetPropList(
 TypeInfo: PTypeInfo;
 TypeKinds: TTypeKinds;
 PropList: PPropList):
 Integer;

These two routines fill the PropList
parameter with a list of pointers to
properties RTTI information. Get-
PropInfos retrieves the properties,
while GetPropList allows you to

December 1996 The Delphi Magazine 23

➤ Figure 5: CLASSTYP

type
 PPropInfo = ^TPropInfo;
 TPropInfo = packed record
 PropType: PTypeInfo; // property type RTTI
 GetProcn: Pointer; // read method
 SetProc: Pointer; // write method
 StoredProc: Pointer; // store method
 Index: Integer; // property index
 Default: Longint; // default value (odd type)
 NameIndex: SmallInt; // index of the name
 Name: ShortString; // name
 end;

➤ Listing 10

var
 ppi: PPropInfo;
 pProps: PPropList;
 nProps, I: Integer;
...
// add the list of properties (if any)
nProps := ptd^.PropCount;
if nProps > 0 then begin
 // format the initial output
 sList.Add(’’);
 sList.Add(’=== Properties(’ + IntToStr(nProps) + ’) ===’);
 // allocate the required memory
 GetMem(pProps, sizeof(PPropInfo) * nProps);
 // protect the memory allocation
 try
 // fill the TPropList structure pointed to by pProps
 GetPropInfos(pti, pProps);
 // sort the properties
 SortPropList(pProps, nProps);
 // show name and data type of each property
 for I := 0 to nProps - 1 do begin
 ppi := pProps [I];
 sList.Add(ppi^.Name + ’: ’ + ppi^.PropType.Name);
 end;
 finally
 // free the allocated memory
 FreeMem(pProps, sizeof(PPropInfo) * nProps);
 end;
end;

➤ Listing 11: Additions to the ShowClass method used to show
properties information

specify a filter on the kind of
properties you are interested in
and returns the number of proper-
ties matching the criteria. The in-
formation we are accessing is
available only for published proper-
ties: protected or public properties
generate no RTTI.

The PropList parameter is simi-
lar to the last parameter of the
TPropData record above:

type
 PPropList = ^TPropList;
 TPropList = array[0..16379]
 of PPropInfo;

In practice, TPropList is a list of
pointers to properties RTTI infor-
mation and PPropList is a pointer to
the list of pointers. These defini-
tions and the TPropData record all
refer to another data type,
TPropInfo. A pointer to this same
data type is returned by a third
property information access func-
tion, GetPropInfo, which extracts
the PProfInfo pointer for a specific
property passed by name:

function GetPropInfo(
 TypeInfo: PTypeInfo;
 const PropName: string):
 PPropInfo;

This function is used to access a
specific property, passed by string.
For the moment, we can turn our
attention to the TPropInfo data
structure, shown in Listing 10.

This structure reveals a lot of
information about properties. It in-
cludes the name of the property,
the index of its name (probably re-
ferring to a list of names, I guess
this is an optimization to save
memory), an index of the property
and a pointer to the RTTI informa-
tion of the property type.

Then there are three pointers to
the methods used to operate on
the property (if defined). These are
the methods in the read, write, and
stored sections of the property
definition. We can use them to test
if they are defined and to retrieve
the memory address, the method
pointer. Unfortunately we cannot
get their names, because it is very
uncommon to use published
methods for property access.

24 The Delphi Magazine Issue 16

The final information is the de-
fault value of the property. The
strange thing here is the data type
of this field: LongInt. In fact, the
actual meaning of this value is de-
termined by the data type of the
property. So it is possible to use it
only after typecasting it to the
proper type (although I am not go-
ing to use it in the example).

After this long introduction we
are ready to look into the final part
of the ShowClass procedure for our
CLASSTYP example. The code
reads the number of properties
from the TPropData structure and if
it finds any it outputs an initial line,
then displays a line describing
each property. The properties in-
formation is retrieved by calling
the GetPropInfos function, passing
as the PPropInfo parameter a block
of memory allocated with the
proper size (the size of the pointers
of the list multiplied by the number
of properties). The code added to
ShowClass is in Listing 11, with a

couple of specific local variables at
the beginning.

Inside the try-finally block
(also used to free the memory in
case of an exception), we get the
properties information, then out-
put each name and data type inside
a for loop. In between these state-
ments we call SortPropList to sort
the properties alphabetically.

I found SortPropList while look-
ing at the implementation portion of
the TypInfo unit. In fact it is not
exported, but we can simply
borrow its code.

That’s all for the CLASSTYP pro-
gram. You can see an example of
the output with the list of proper-
ties in Figure 5. However, you
should really try running the
program to get an idea of its effect.

Conclusion
This example ends this article. We
have delved into TYPINFO.PAS and
built simple programs to show
RTTI information for ordinal types,

method pointers and classes.
There is a lot more to say about
RTTI. Actually the most important
use of these constructs is to access
component properties dynami-
cally, by name, rather than with the
usual compiled code, but I’ll have
to leave that to a future article...

Marco Cantù, author of the book
Mastering Delphi 2 (Sybex), is
working an a new advanced book
titled Delphi Developer’s Hand-
book (SYBEX). Besides writing, he
enjoys speaking at conferences
and consulting on advanced
features of Delphi. Contact him at
100273.2610@compuserve.com, or
check his home page at
 http://ourworld.compuserve.com/
 homepages/marcocantu

December 1996 The Delphi Magazine 25

	Accessing Type Information
	Looking Into TYPINFO.PAS
	RTTI For Ordinal Types
	Enumerated Type Values
	The ORDTYPE Example
	Special Functions For Cursors And Colors
	RTTI For Method Pointers
	RTTI For Classes
	Getting A Properties List
	Conclusion

